Small Business Innovation Research/Small Business Tech Transfer

RAP Figuring slumped mirrors to remove mid-spatial frequency errors, Phase I

Completed Technology Project (2009 - 2009)

Project Introduction

Future X-ray telescopes require significant amounts of optical area. To accommodate this in a grazing incidence design, extremely thin mirrors are formed in concentric shell configurations. A slumping technique has been demonstrated with such thin, lightweight shells. However, the optical surface is found to contain a significant amount of mid-spatial frequency errors. It is proposed to demonstrate a sub-aperture figuring technique that does not impart mid-spatial frequencies to the optical substrate geometries planned for integration into next-generation X-ray telescopes. Reactive Atom Plasma (RAP) is a sub-aperture, atmospheric pressure, non-contact figuring technology that relies on a deterministic gas-phase etching of the optical surface with high material removal rates. RAP has already been demonstrated as a very credible approach for fabricating the lightweight wedges required for the assembly of such mirrors. RAP is especially suitable for damage-free processing of extremely lightweight mirrors given the non-contact operation, and its ability to ameliorate sub-surface damage. The tool footprint is a Gaussian and hence has a limited capability to both impart mid-spatial errors, as well as to fix them. In phase 1, we plan on demonstrating the ability of the RAP process to impart minimal mid-spatial errors into the optical surface while a figuring demonstration using adjustable footprints is planned for phase 2.

Anticipated Benefits

Potential NASA Commercial Applications: Other optics applications involve lithography, surveillance tracking and fire-control systems with various commercial and DoD agencies. Making precision surfaces with a high aspect ratio is a common problem across optics, semiconductors, compound semiconductors, photo-voltaics etc. The high aspect ratio results from a need to reduce mass (as in the case of lightweight mirrors), improve device performance/packaging (as in semiconductors), decrease costs (as in photo-voltaics). The methods developed in Phase 1 can be applied to the rapid manufacturing of such surfaces in these other areas. RAPT Industries, Inc. has already commercialized the edge cleaning of semi-conductor wafers through a licensing arrangement with Accretech, USA.

RAP Figuring slumped mirrors to remove mid-spatial frequency errors, Phase I

Table of Contents

Project Introduction		
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	2	
Project Transitions		
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)	3	
Technology Areas	3	

Small Business Innovation Research/Small Business Tech Transfer

RAP Figuring slumped mirrors to remove mid-spatial frequency errors, Phase I

Completed Technology Project (2009 - 2009)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
RAPT Industries, Inc.	Supporting Organization	Industry	Fremont, California

Primary U.S. Work Locations	
California	Maryland

Project Transitions

January 2009: Project Start

July 2009: Closed out

Closeout Summary: RAP Figuring slumped mirrors to remove mid-spatial frequency errors, Phase I Project Image

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Project Manager:

Petar Arsenovic

Principal Investigator:

Pradeep K Subrahmanyan

Small Business Innovation Research/Small Business Tech Transfer

RAP Figuring slumped mirrors to remove mid-spatial frequency errors, Phase I

Completed Technology Project (2009 - 2009)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 TX08.2 Observatories
 - ☐ TX08.2.1 Mirror Systems

